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The flow about a body placed inside a channel differs from its unbounded counterpart
because of the effects of wall confinement, shear in the incoming velocity profile, and
separation of vorticity from the channel walls. The case of a circular cylinder placed
between two parallel walls is here studied numerically with a finite element method
based on the vorticity–streamfunction formulation for values of the Reynolds number
consistent with a two-dimensional assumption.

The transition from steady flow to a periodic vortex shedding regime has been
analysed: transition is delayed as the body approaches one wall because the interac-
tion between the cylinder wake and the wall boundary layer vorticity constrains the
separating shear layer, reducing its oscillations. The results confirm previous obser-
vations of the inhibition of vortex shedding for a body placed near one wall. The
unsteady vortex shedding regime changes, from a pattern similar to the von Kármán
street (with some differences) when the body is in about the centre of the channel, to
a single row of same-sign vortices as the body approaches one wall. The separated
vortex dynamics leading to this topological modification is presented.

The mean drag coefficients, once they have been normalized properly, are com-
parable when the cylinder is placed at different distances from one wall, down to
gaps less than one cylinder diameter. At smaller gaps the body behaves similarly to
a surface-mounted obstacle. The lift force is given by a repulsive component plus an
attractive one. The former, well known from literature, is given by the deviation of
the wake behind the body. Evidence of the latter, which is a consequence of the shear
in front of the body, is given.

1. Introduction
The flow inside a channel in the presence of a circular cylinder is the subject of

this work. The channel flow is laminar (Poiseuille) in the absence of the obstacle and
the phenomena associated to the presence of the cylinder are studied.

The most relevant feature of the flow, at moderate values of the Reynolds number,
e.g. at a Reynolds number (based on the external velocity and cylinder diameter)
close to 50, is the instability of the symmetric wake and the onset of a time-periodic
regime characterized by alternate vortex shedding, known as the von Kármán vortex
street, whose dimensionless period depends on the Reynolds number. By further
increasing the Reynolds number a transition to three-dimensional flow occurs around
the value 180 (Williamson 1996a, b; Sohankar, Norberg & Davidson 1999); however
the periodic vortex shedding phenomenon remains the large-scale dominant feature
even at large Reynolds number in the turbulent wake.
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The similarly relevant case of flow about a cylinder in the presence of plane bound-
aries has received much less attention. The presence of a plane boundary modifies the
dynamics, with respect to the unbounded conditions, due to essentially three different
factors. (i) The impermeability of the wall gives an irrotational constraint to the
cylinder wake which cannot spread without limit. An important effect given by the
nearby wall, which is the same as that found in a periodic array of symmetrical pairs
of cylinders, is the birth of a finite mean force directed away from the wall (Bearman
& Wadcock 1973). (ii) The flow over a rigid wall presents a velocity profile which is
not uniform in front of the cylinder. This shear has a non-symmetric influence on
the body, and the incoming vorticity profile combines with the vorticity separated
from the cylinder. (iii) The presence of a no-slip wall can give rise to a wake-induced
boundary layer on the plane boundary. This effect has little influence until the distance
from the wall is large, but it eventually modifies the entire wake when the interaction
is strong enough to provoke the separation of the boundary layer from the plane
wall. In this case a more complex wake structure can develop from the combination
of the vorticity shed from the cylinder and from the plane wall.

It should be noted that the phenomena associated with the last two points (ii)
and (iii) are not the same when the body is moving in a still fluid or when a
stream encounters a fixed body. These two physical conditions, which were the same
in unbounded fluid (kinematically the same, while the dynamic actions differ, in
unsteady flow, by an analytical term), must be differentiated in the presence of a
plane boundary. The interaction of an incoming steady flow over a wall with a
cylinder also depends on the height of the boundary layer on the wall. Thus we have
an additional external length scale which determines the boundary layer thickness: it
can be the upstream length of the plane boundary or, as is the case in this work, the
distance to another parallel wall which limits the growth of the boundary layer.

Several experimental results for the flow around a circular cylinder in the presence
of a single plane boundary have been reported at moderately high Reynolds number,
in a turbulent regime (Bearman & Zdravkovich 1978; Grass et al. 1984; Taniguchi &
Miyakoshi 1990; Lei, Cheng & Kavanagh 1999). These have shown that the major
effects due to the presence of the wall are the modification of the forces on the
body as it approaches the wall, a slight variation of the shedding frequency, and
the suppression of vortex shedding when the body is closer than a critical distance
from the wall. A review of the results for this case is reported in Lei et al. (1999). In
the presence of one wall Bearman & Zdravkovich (1978) have shown that the wake
structure and the shedding rate are about the same as the unbounded case until the
cylinder is very close to the surface such that the gap between the body and the
wall is as small as 30 to 40% of the body diameter. At smaller distances the wake is
almost steady and the periodic shedding is strongly inhibited; in this case they also
report a visible separated bubble over the wall. More recent measurements (Lei et al.
1999) have shown that the vortex shedding is inhibited when the gap is about 0.2–0.3
diameters, the effective value depending on the thickness of the turbulent boundary
layer.

Forces are influenced by the wall along with the modification of the wake; a
decrease of the drag coefficient, when normalized with the external flow velocity, is
reported by several authors as the body enters the wall boundary layer (Taniguchi &
Miyakoshi 1990; Lei et al. 1999). The lift force, which is zero far from the wall, is
usually directed away from the wall as a consequence of the deviation of the wake
behind the body away from the wall and of the reduction of velocity in the gap
below the body. However a non-monotonic change in the lift, including in some cases
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a change of sign, with the distance from one wall has been observed experimentally
(Lei et al. 1999). The actual lift in a real flow is evidently also influenced by the
presence of an incoming shear; the influence of shear alone has been investigated
numerically in laminar flow (Nakabayashi, Yoshida & Aoi 1993) where evidence of
an unexplained negative lift is reported.

The case of an oscillatory stream has also received much attention because of its
relevance to marine pipelines. The wake structure and related actions on the body
in the unbounded domain have been systematically studied in recent years both
experimentally and numerically (Tatsuno & Bearman 1990; Justensen 1991; Dütsch
et al. 1998). The influence of a plane boundary in the oscillatory regime was studied
experimentally (Sumer, Jensen & Fredsoe 1991) in the case of cylinder moving in a
still fluid. As in the steady case, a mean lift force away from the wall is experienced
by the body as it approaches it. The shedding regimes are influenced by the presence
of the wall at distances comparable with the cylinder diameter. However it must be
remembered that the separated vortex fields in the case of oscillatory flow are more
complex than in steady flow and a more marked influence of the wall should be
expected. When the distance is small enough the vortex shedding is almost completely
suppressed because of the interaction with the wall boundary layer separation.

The present work is focused on the interaction between a laminar stream in a
plane channel and a small circular cylinder placed inside it. The undisturbed velocity
profile is parabolic and the dynamics about the cylinder are studied, varying the
Reynolds number, as a function of the cylinder position inside the channel. It is
evident from the results cited above that the influence of the wall is felt only when
the body is at a distance comparable with or smaller than its diameter; therefore as
the body approaches one wall, the influence of the other channel wall is limited to a
confinement of the flow, or blockage effect, and this study also describes shear flow
over a cylinder near a plane boundary. This study has been stimulated by the need
to predict the spurious effects associated with the insertion of probes or wires in a
conduit in the laminar regime. However it has other applications; for example, the
presence of wake vorticity enhances transport and mixing, and it has been shown that
heat transport in a laminar channel flow in the presence of a row of cylinders can
reach levels comparable with those of turbulent channel flow with a smaller energy
dissipation (Karniadakis, Mikic & Patera 1988).

The flow past a cylinder in a channel flow has been studied for the cylinder
placed symmetrically in the centre of the channel (Chen, Pritchard & Tavener 1995).
That study focused on the nature and occurrence of the bifurcation from steady
symmetric flow to the periodic shedding regime. In that case the channel walls were
introduced as a possible means of eliminating the discrepancies found experimentally
and numerically for the bifurcation Reynolds number in an unbounded domain, which
are assumed to be due to different approximations of the unboundness idealization.
That study was performed numerically with a finite element method in primitive
variables; an eigenvalue calculation was also presented to better localize the critical
value of the parameters. In the confined flow, which is easier to reproduce, the
bifurcation was found to be of Hopf type; these results are compared with ours in the
case of a symmetrically placed cylinder. The case of a body between frictionless walls
(symmetry condition) has been considered (see for example Sohankar et al. 1999):
the walls simply give the (irrotational) local acceleration effect due to the blocking by
the body.

In the present study the two-dimensional Navier–Stokes equations are solved in the
non-regular domain by a finite element method with a vorticity–streamfunction formu-
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lation such that the continuity equation is satisfied exactly. Any three-dimensional ef-
fect is therefore neglected and the results are pertinent only for values of the Reynolds
number low enough to guarantee the stability of the flow to three-dimensional distur-
bances. In the absence of specific results regarding the stability to three-dimensional
disturbances of a channel flow with an immersed body, the reliability of the two-
dimensional assumption depends on (a) the stability of a plane channel flow, and (b)
the stability of the flow about a cylinder in unbounded flow; and (c) whether the
combined dynamics would be expected to enhance or reduce the stability of the flow.

Linear theory for channel flow predicts that two-dimensional disturbances are
unstable at a lower Reynolds number than three-dimensional ones; in fact these are the
first to grow, even though they are in turn unstable to three-dimensional perturbations,
and are found to become unstable for values of the channel-based Reynolds number
above 3000. The transition from two-dimensional to three-dimensional flow in the
wake of a circular cylinder has been analysed through a number of experimental
results (Williamson 1996b), and also reviewed in Williamson (1996a). The transition
is due to an instability of the rectilinear wake-vortex filament pairs: a waviness of
the filaments produces a mutual streamwise stretching resulting in a tendency for it
to grow; when the Reynolds number is large enough that the growth rate dominates
over the viscous damping rate the wake becomes unstable and eventually it gives rise
to vortex loops and streamwise vorticity. Such a transition occurs at a cylinder-based
Reynolds number above approximately 180 (in ideal conditions the critical value is
about 194, Williamson 1996a). The present study is limited to values of the cylinder-
based Reynolds number below these limits, and the only simulations produced outside
this range, in the extreme case of the body very close to one channel wall, are just
for the sake of completing a two-parameters domain picture. It is mentioned above
that experiments (Bearman & Zdravkovich 1978; Grass et al. 1984; Taniguchi &
Miyakoshi 1990; Lei et al. 1999) in the turbulent regime indicate that, as the body
approaches one wall, the flow possibly suppresses unsteady vortex shedding, or the
wake becomes a single row of vortex filaments, rather than pairs, for which the
three-dimensional instability found in unbounded flow does not apply. These results,
together with the ones found here, suggest, although there is no proof, enhanced
stability properties and that the transition to three-dimensional flow may more likely
be delayed by the presence of nearby walls.

This work aims to address questions regarding the characteristics of the vortex
shedding regime and its modifications, either qualitatively and quantitatively, as the
body approaches one wall as Reynolds number varies in the range from the transition
to the periodic shedding regime to values where the two-dimensional approximation
is physically representative. The features of the separated vorticity dynamics are
analysed at different conditions with particular attention to the interaction between
the cylinder wake and the induced separation on the plane walls. The presence of
the plane boundaries modifies the shedding frequencies and their dependence on
the Reynolds number. The value of the critical Reynolds number is shown to vary
with the distance from the boundary; the suppression of vortex shedding, observed
experimentally in different conditions (Bearman & Zdravkovich 1978; Sumer et al.
1991; Lei et al. 1999), is also verified, and the influence of the walls on the forces
acting on the body is analysed and compared with previous findings.

The mathematical problem is formulated in § 2 and the numerical method is
described in § 3. Numerical results for the flow characteristics are presented and
discussed in § 4, and for the phenomena related to the forces acting on the body in
§ 5. A concluding discussion and a summary of results is presented in § 6.
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2. Mathematical formulation
A plane channel with rectilinear walls separated by a distance H , contains a circular

cylinder of diameter D, whose position is defined by the gap ∆, the minimal distance
from the cylinder surface to the nearest wall. Consider an incompressible fluid, with
density ρ and kinematic viscosity ν, flowing with steady average velocity U inside
the channel. The problem can be made dimensionless by taking H as the unit length,
H/U as the unit time, and ρH3 as the unit mass. The problem is governed by three
dimensionless parameters: the channel Reynolds number Re = UH/ν, the blockage
ratio d = D/H , and the gap parameter γ = ∆/D. The gap is a positive number which,
for symmetry reasons, takes its maximum value γ = (1 − d)/2d when the cylinder is
placed in the centre of the channel.

We are interested in the case of a relatively small cylinder, so that a fixed value
d = 0.2 of the blockage ratio is assumed throughout this study. The influence on the
blockage ratio has been investigated by Chen et al. (1995) for the case of a centred
cylinder where it is shown that no qualitative change occurs in the flow for blockage
ratio below 0.5. In the limiting case, when d� 1, the flow is essentially independent
of the blockage ratio. The dependence on the Reynolds number Re and on the gap
γ, now confined to the range 0 6 γ 6 2, is studied here.

Assume a Cartesian system of coordinates {x, y} with the x-axis along the centreline
of the channel. The governing equations are the plane Navier–Stokes equations which
are written in the vorticity–streamfunction formulation:

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (1)

where ω(x, y, t) is the vorticity and ψ(x, y, t) is the streamfunction. Vorticity and stream-
function are related by the Poisson equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω; (2)

in this formulation the continuity equation is automatically satisfied, and the
divergence-free velocity field can be computed from the streamfunction (Batchelor
1967).

Equations (1) and (2) must be completed with the boundary conditions. Infinitely
upstream and downstream the flow is assumed to be independent of x. On the rigid
walls, channel walls and cylinder surface, the velocity vector must vanish and thus the
tangential and the normal derivatives of the streamfunction are zero. At the lower and
upper channel walls the constant streamfunction values can be obtained a priori by
the value of the mean velocity to give ψ = 0 and ψ = 1 respectively. The conditions
on the streamfunction are used in the numerical method to express the vorticity at
the walls.

3. Numerical method
The space domain is discretized with triangular finite elements. For maximum

simplicity, the variables have been assumed to change linearly within every element.
Differential equations (1) and (2) are rewritten on the finite element mesh using a
Galerkin residual procedure (Zienkiewicz 1977), resulting in a second-order accuracy
in space.
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The vorticity equation can be written in matrix form as

B
dω

dt
+C(ψ)ω +

1

Re
Kω = 0, (3)

where ω and ψ now represent the vector of the values of vorticity and streamfunction
at the nodes of each element; B is the element mass matrix, K is the stiffness
matrix which corresponds to the discretized Laplace operator, and C(ψ) represents
the nonlinear operator applied to vorticity. The Poisson equation, discretized as

Kψ = Bω, (4)

allows us to determine the value of ψ once the vorticity is known at all points internal
to the domain.

Equation (3) is discretized in time with a second-order scheme fully implicit for the
viscous term; the vorticity field is thus advanced in time by solving

B
(3ω(n+1) − 4ω(n) + ω(n−1))

2∆t
+C(ψ(∗))ω(∗) +

1

Re
Kω(n+1) = 0, (5)

where the superscript (n) represents the nth time step, while the superscript (∗) corre-
sponds to the extrapolation f(∗) = 2f(n) − f(n−1).

Boundary conditions are given at the inlet by prescribing the Poiseuille profile;
this gives a Dirichlet condition for either the vorticity or the streamfunction. At the
outlet, far downstream, the Neumann condition of zero normal derivative is imposed.
At the upper and lower walls the value of the streamfunction is imposed directly;
on the cylinder wall the constancy of the streamfunction (to an unknown value)
is imposed by a local modification to the stiffness matrix in equation (4). In this
way the Poisson equation is not satisfied at the walls because it is substituted by
the streamfunction boundary conditions. The value of vorticity at the rigid walls
is computed by back-solving equation (4) with unknowns the values of ω at the
walls; the no-slip condition of zero normal derivative for the streamfunction is
automatically satisfied by elimination of the ‘flux of streamfunction’ in the residual
Galerkin formulation (Saı̀ac, Santi & Mai 1995). This procedure gives the same order
of accuracy for the calculation of the vorticity at the wall and at the internal points.

The numerical results were obtained by the solution of the equation over meshes of
finite elements. The infinite-length domain was reduced to a finite domain contained
between x = −3 and x = +8; at this downstream end, which corresponds to 40
cylinder diameters, a flow constant along x was well established. A few trials were
performed with a longer numerical domain extended up to x = 10 with no appreciable
differences in the results either in the steady or unsteady cases.

The number of nodes employed for the discretization ranges from 5438 nodes
(10 509 elements), for the symmetric, γ = 2, case, to 9267 nodes (17 728 elements) for
the γ = 0.25 case. The same mesh was used, at a given γ, for all Reynolds numbers,
which means that some lower Reynolds number simulations could be performed with
a smaller number of nodes. Care was used in refining the grid around the cylinder,
downstream of it, and near the walls, so that the typical size of smaller elements is
about 5× 10−3. The timestep was chosen to satisfy the convective stability condition
and the diffusive accuracy, and generally a maximum value of ∆t = 5 × 10−3 was
used.

A grid refinement test was performed for the γ = 2 and γ = 0.75 cases at Re =
500, 1000. The grid was refined by dividing each triangular element into four smaller
ones; in this way the typical grid size is halved. One snapshot of the instantaneous
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Figure 1. Instantaneous flow vorticity contours for Re = 1000 and γ = 2: (a) normal grid, (b)
refined grid. Here and in similar following figures, contour levels increase/decrease from ±5 in steps
of ±10; positive levels (black lines), negative (grey).

vorticity field is plotted in figure 1(a), at γ = 2, Re = 1000, for the grid normally
used and in 1(b) for the refined one. Smoother contours can be seen in the refined
calculation, in particular at low vorticity levels; however no significant physical
difference can be detected. Note that the contour lines reported here, and throughout
the paper, are drawn directly as straight lines across each (linear) element without
any artificial smoothing applied to the curve as a whole.

Every simulation was impulsively started from the irrotational field, and in all cases
the steady or periodic regimes are reached after about 20 to 30 time units.

4. Flow features and transition
4.1. Transition

Let us first consider the case when the cylinder is placed in the centre of the channel,
i.e. γ = 2. This case has been previously studied by Chen et al. (1995) where it has
been shown that the flow is steady when the Reynolds number is below a critical
value, Re = 231, and a periodic shedding regime occurs for larger values of the
Reynolds number. This behaviour is analogous to what happens in an unbounded
field where the critical value of the cylinder-based Reynolds number is approximately
50. A cylinder-based Reynolds number can be constructed for the present case as

Recyl = Re vcyl d, (6)

where vcyl is the average velocity in front of the cylinder far upstream

vcyl (γ) =
1

d

∫ γd+d−(1/2)

γd−(1/2)

vx(y) dy = −6d2γ2 + 6d(1− d)γ + d(3− 2d), (7)

and vx(y) = 6(1/4− y2) is the upstream Poiseuille velocity profile. The critical value,
corresponding to Re = 231, of this cylinder-based Reynolds number Recyl ' 68 is
slightly larger than in the unbounded case; the local acceleration, caused by the
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Figure 2. Critical (a) Reynolds number and (b) cylinder-based Reynolds number as a function of
the gap parameter.

wall confinement and by the blockage, presumably stabilizes the flow and delays the
occurrence of instability (Sohankar et al. 1999).

The transition from steady flow to the time-periodic regime is further delayed when
the cylinder approaches one wall. The dependence of the critical Reynolds number on
the gap parameter is shown in figure 2(a). When the cylinder is placed symmetrically
between the walls, γ = 2, we have numerically confirmed that the transition is between
Re = 230 and Re = 240. As the gap is reduced there is a rapid increase in the value of
the critical Reynolds number and eventually the transition occurs between Re = 1500
and Re = 1800 when the gap is reduced to γ = 0.25. This delay of the transition
might first be thought to be attributable to the velocity profile, that is to the reduction
of the velocity in front of the body as it approaches one wall which corresponds to
a reduction of the local Reynolds number Recyl . To show that this is not sufficient to
explain the transition delay, the dependence of the critical value of the cylinder-based
Reynolds number with the gap parameter is plotted in figure 2(b). The shape of the
two curves in figure 2 is essentially the same.

The different local velocity does not explain the increase of the critical Reynolds
number as the cylinder approaches one wall. Neither can an explanation be found in
the local irrotational acceleration which occurs only on one side of the body and is
reduced on the opposite side. As the body approaches one wall a local acceleration
and deceleration occurs on the wall itself; this produces higher vorticity values in the
wall boundary layer corresponding to the body, and the boundary layer then rapidly
grows downstream and influences the cylinder wake on the side facing the wall. The
cylinder wake on the wall side is stabilized by the coupling with the wall vorticity,
and so it does not oscillate easily in a shedding regime as it is shown below. This
phenomenon is increasingly relevant as the body approaches the wall as can be seen
in figure 2 as γ < 1.

4.2. Flow features

The flow in the steady-state regimes is reported in figure 3, at Re = 200, for five
different values of the gap parameter. The positive (black lines) and negative (grey)
vorticity isolines are shown from values ±5 with a constant increase of ±10 units
for all the pictures (and following similar figures). When the cylinder is placed in the
centre of the channel the wake is symmetric and resembles the unbounded case. As
the cylinder approaches one wall the wake vorticity on the wall side is significantly
reduced in length. On the opposite face of the cylinder the wake elongates, smooths
out and eventually combines with the oncoming vorticity of the Poiseuille profile.
Decreasing the gap value, it can be seen that the wall-side wake couples with the
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wall boundary-layer vorticity of opposite sign while the actual wake is dominated by
the vorticity shed from other side of the body; when γ = 0.25 the wall-side wake has
almost disappeared and the wake flow resembles that of a surface-mounted obstacle.
The coupling between cylinder and wall vorticity can explain the observed quasi-
suppression of shedding found experimentally for γ < 0.3 in a turbulent boundary
layer (Bearman & Zdravkovich 1978; Taniguchi & Miyakoshi 1990; Lei et al. 1999)
and in an oscillating flow (Sumer et al. 1991).

The unsteady periodic shedding regime is shown in figure 4(a–d) for an almost
symmetric geometry, γ = 1.75, for Re = 1000. The dimensionless shedding period for
this case is T = 0.68 and instantaneous vorticity fields are shown in figure 4(a–d) at
time intervals ∆t = 0.2. The time-averaged vorticity field over one period is shown in
figure 4(e). In this case the wake has already lost the symmetry and a weak dominance
of the vorticity shed from the side farther from the wall (clockwise, negative vorticity)
is noticeable. However the structure is analogous to the classic von Kármán vortex
street with a remarkable difference given by the wall confinement: the trajectories
of shed vortices cross each other and the final vertical position is opposite with
respect to the unbounded case. Clockwise vortices, separated from the upper side of
the cylinder, occupy the lower position in the street while counterclockwise vortices
occupy the upper side of the street (see also figure 1). This phenomenon, due to the
walls that repel the forming wake, represents a weak kind of interaction in the sense
that the cylinder wake is unable to produce any boundary layer separation on the
wall.

The case of the cylinder closer to one wall is reported in figure 5 for the same
Reynolds number and γ = 1.25 which corresponds to a period T = 0.71. Instanta-
neous vorticity fields are shown in figure 5(a–d) every ∆t = 0.2; the period-averaged
vorticity is plotted in figure 5(e). The lack of symmetry is evident at this distance.
The street of vortices is composed of well-defined negative vortices shed from the
upper side of the cylinder and weaker positive ones shed from below. In fact the
positive vorticity shed from the wall side of the cylinder begins to interact with the
boundary-layer negative vorticity of the plane wall. The shed vorticity is stretched
during the pairing with the opposite-sign vorticity, which delays the roll-up into a
well-defined vortex and reduces the circulation of the eventual wake vortex because of
the dissipative nature of the stretching process. The period-averaged vorticity shows
a wake which is deflected away from the wall even though the front stagnation
point remained essentially centred; the period-averaged boundary layer at the lower
wall presents a maximum of wall vorticity corresponding to the body which falls
to a minimum after it. The interaction of the body with the nearby wall is shown
in figure 6 where the time-evolution of the positive and negative wall shear stress
regions are reported corresponding to the fields of figure 5; an enlarged view of fig-
ure 5(d) is shown in the background for clarity. This space–time representation allows
the evolution of separation and reattachment points to be followed and indicates
the unsteady features of the interacting separations (Pedrizzetti 1996). The vorticity
separated from the lower side of the cylinder and the flow acceleration create growth
of the vorticity in the facing wall boundary layer; this boundary layer is slightly
decelerated after the contraction due to the cylinder and is decelerated further by
the clockwise vortex separated from the upper side of the body. Such a deceleration
is enough to produce weak secondary vorticity on the wall (shown darker grey in
the picture) and an unsteady boundary-layer separation from the wall. The separated
vorticity then interacts with the lower-wall wake vortex reducing its strength.

When the cylinder approaches closer to the wall the interaction between cylinder
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Figure 3. Steady flow vorticity contours for Re = 200, and (a) γ = 2, (b) γ = 1.75, (c) γ = 1.25,
(d) γ = 0.75, (e) γ = 0.25.
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Figure 4. Unsteady flow vorticity contours for Re = 1000 and γ = 1.75: (a–d) instantaneous
vorticity during one period (T = 0.68) with time increasing from a to d in steps of 0.2 time units;
(e) period-averaged vorticity.
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Figure 5. Unsteady flow vorticity contours for Re = 1000 and γ = 1.25: (a–d) instantaneous
vorticity during one period (T = 0.71) with time increasing from a to d in steps of 0.2 time units;
(e) period-averaged vorticity.
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γ = 1.25; negative (clockwise wall vorticity) is shown darker grey. Background: instantaneous
vorticity field contours, corresponding to figure 5(d), at levels from 0 in steps of ±5; positive levels
(darker grey), negative (light grey), zero (black).

wake and wall vorticity is more marked. This is shown in figure 7 at the same Reynolds
number and γ = 0.75 whose corresponding period is T = 0.78. Instantaneous vorticity
fields are shown in figure 7(a–d) every ∆t = 0.2; the period-averaged vorticity is plotted
in figure 7(e). At this distance the wall side of the cylinder is unable to shed any
vortices and the final wake is composed of a single row of same-sign vortices shed
from the opposite side. The vorticity separating from the cylinder on the side facing
the wall begins to roll-up but is rapidly stretched by the wall vorticity of opposite sign.
Thus part of it remains attached to the cylinder to form a quasi-steady attached wake,
while the farther part does not roll up and forms, with the wall vorticity, a pair of
opposite-sign vortex sheets which are dissipated during the mutual stretching process.
As a result the major oscillations of the periodic shedding dynamics are found farther
downstream of the cylinder rather than on the body itself. The steady vorticity has
a three-layer structure, which is slightly deflected away from the wall, where the wall
vorticity is coupled with the wake on the cylinder’s wall side. The regularity of the
row of single vortices is shown by the appearance of the period-average single-signed
elongated shear layer few diameters downstream the body.

The wall shear stress space–time evolution is reported in figure 8 for the same
parameters (Re = 1000, γ = 0.75). The reattachment point at the rear of the cylinder
has a significantly reduced oscillation indicating that the separating shear layer on
the lower side of the body is constrained by the presence of the closer wall. The
vorticity boundary layer which is created at the wall below the body is subjected to a
deceleration after the body which is also due to the vicinity of the same-sign vortex
separated from the upper side of the cylinder. The boundary layer vorticity separates
from the wall and is dissipated during its pairing with the nearby wake vorticity;
nevertheless a wall layer of secondary vorticity is maintained, induced by the single
vortex wake.

When the cylinder is even closer to one wall, it approaches the case of a surface-
mounted obstacle with one recirculating bubble downstream which becomes unstable
at large Reynolds number. (Note however that at such large Re the two-dimensional
flow may become unstable to three-dimensional disturbances and the plane approxi-
mation is no longer physically representative.)

The shedding frequencies have been evaluated from signals of several flow quantities



14 L. Zovatto and G. Pedrizzetti
0.5

0

–0.5

y

0.5

–0.5

y

–0.5 0 0.5 1.0 1.5 2.0 2.5

x

(b)

(a)

0

0.5

–0.5

y 0

0.5

–0.5

y 0

0.5

–0.5

y 0

(c)

(d )

(e)

Figure 7. Unsteady flow vorticity contours for Re = 1000 and γ = 0.75; (a–d) instantaneous
vorticity during one period (T = 0.78) with time increasing from a to d in steps of 0.2 time units;
(e) period-averaged vorticity.



Flow about a circular cylinder between parallel walls 15

0

–0.25

–0.50

–0.25 0
0.25 0.50

0.75
1.00

1.25
0

0.2
0.4

0.6

Time
x

y

0.8
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γ = 0.75; negative (clockwise wall vorticity) is shown darker grey. Background: instantaneous
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(vorticity at different points, forces) and the time signals were always essentially
sinusoidal. Their spectra revealed some energy at frequencies that are multiples of
the fundamental one only at the higher Reynolds values, although the secondary
peak was at most 3 orders of magnitude smaller than the fundamental one. The
dimensionless period of the periodic regimes is reported in table 1 as a function of
the Reynolds number and the gap parameter. The result for the symmetric case is
in general agreement with the unbounded case when the latter is compared with the
cylinder-based Strouhal number d/vcylT . This ranges approximately from 0.16 for
Recyl = 70 to 0.2 for Recyl = 1000. The Reynolds number dependence is analogous
when the cylinder is at a smaller distance from one wall, with differences given by
the different values of the critical Reynolds number (the case γ = 0.75, Re = 500 is
shown in parentheses because the weak oscillation is decaying extremely slowly and
we cannot guarantee if it will eventually disappear or settle to a very small but non-
zero value). Notice that, for all values of the gap parameter, the period at the onset
of the unsteady regime is approximately the same. The approach to one wall, when
the Reynolds number is sufficiently high to have a well-developed von Kármán flow,
gives an increase of the period and eventually inhibits the unsteady shedding regime.

The effect of a variation in the Reynolds number is shown in figure 9(a–e) where
the isovorticity lines are plotted, for γ = 0.75, at Re = 100, 200, 300, 500, 700 (a
to e, respectively; pictures a, b, c represent steady fields whereas pictures d, e are
instantaneous snapshots during the periodic regime; the corresponding case at Re =
1000 can be seen in figure 7). As expected an increase in the Reynolds number
corresponds to a more persistent wake which elongates farther downstream. When
the wake is long enough it begins to fluctuate at the downstream tail; at increasing
Re the oscillation influences a larger portion of the wake. This mechanism looks to be
the same as the unbounded case despite the apparent physical difference, in particular
the fact that transition is here not related to an evident symmetry breaking.

5. Forces
The forces acting on the cylinder have been calculated by integration of the wall

pressure and wall shear stress on the cylinder surface. The presence of the wall
influences the pressure distribution on the body (Bearman & Zdravkovich 1978; Lei
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Figure 9. Flow vorticity contours for γ = 0.75 and (a) Re = 100, (b) 200, (c) 300, (d) 500, (e) 700:
(a, b, c) are steady fields, (d, e) are instantaneous fields during the periodic regime.
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γ → 2.00 1.75 1.25 0.75 0.25
Re ↓

100 ∞ ∞ ∞ ∞ ∞
200 ∞ ∞ ∞ ∞ ∞
230 ∞ ∞
240 0.85 ∞
250 0.85
270 0.84 0.83 ∞ ∞ ∞
275 0.84 0.83 ∞ ∞ ∞
280 0.83 0.83 ∞ ∞ ∞
290 0.82 ∞
300 0.81 0.81 0.84 ∞ ∞
400 ∞
450 ∞
500 0.73 0.74 0.76 (0.86) ∞
530 0.85
600 0.84
700 0.82

1000 0.67 0.68 0.71 0.78 ∞
1250 ∞
1500 ∞
1800 0.90
2000 0.90

Table 1. Dimensionless period T for different values of the Reynolds number Re and gap
parameter γ.
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Figure 10. Mean drag coefficient dependence on the Reynolds number for γ = 2, 1.25, 0.75, 0.25:
(a) standard quantities, (b) cylinder-based quantities. Symbols correspond to the same value of γ in
both graphs.

et al. 1999), which can rotate, because of the lack of symmetry, or deform, because
of the direct interaction with the wall. Consequently the drag and lift forces depend
on the distance from the wall in addition to the Reynolds number.

The drag coefficient CD = Fx/0.5d, where Fx is the steady or time-average (for
periodic flow) longitudinal component of the dimensionless force (i.e. dimensional
force per unit length divided by ρU2H), is plotted in figure 10(a) as a function of the
Reynolds number for various values of the gap parameter. The drag coefficient has
the expected decaying behaviour, for all gap values, with increasing Reynolds number.
The shape is similar for gaps from 2 down to 0.75, even though the CD value is reduced;
the extreme case, γ = 0.25, has a higher CD at low Reynolds numbers and a smaller
one at large values. The reduction in the drag coefficient on approaching one wall was
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Figure 11. Mean lift coefficient dependence on the Reynolds number for γ = 1.75, 1.25, 0.75, 0.25.

previously observed at larger Reynolds number (Taniguchi & Miyakoshi 1990; Lei et
al. 1999) as soon as the body penetrates the wall boundary layer. A more appropriate
comparison among the results at different distances from the wall can be obtained
by analysing the behaviour of a cylinder-based drag coefficient CDcyl = CD/v

2
cyl as it

depends on the cylinder-based Reynolds number. This is illustrated in figure 10(b):
the values obtained at gap values larger that 1 are in general agreement with the
unbounded case, and slightly larger for γ = 0.75. The value of CDcyl is significantly
larger when the cylinder is much closer to the wall. In such case the small gap is almost
entirely occupied by the viscous boundary layers created on the lower side of the
cylinder and on the facing wall (see figure 3e), the flow encounters a great resistance
in passing through the viscous gap and is almost entirely turned above the body.
As a consequence the body plus gap system behaves like a larger surface-mounted
object.

The wall exerts a strong influence on the lift force. The lift coefficient CL = Fy/0.5d
is shown in figure 11 as a function of the Reynolds number for various values of the
gap parameter. The lift takes positive or negative values depending on the values of
the parameters. The graph suggests the existence of at least two different concurrent
phenomena that produce positive and negative lift, respectively.

It is reported in the literature that the presence of a wall generally produces a
repulsive force from it. This is found to be attributable to the confinement effect of
the presence of the plane wall and, secondly, to the influence of the vorticity separated
from it. A repulsive force has been found to act between a pair of cylinders side by
side (Bearman & Wadcock 1973). In such a simple model the wall can be seen as
an axis of symmetry between a pair of cylinders and therefore it only produces a
confinement effect. When the cylinders approach each other the dividing streamline,
which was in front of the cylinder in an unbounded flow, or at γ = 2, moves towards
the wall; oppositely the wake on the rear of the body is confined on the wall side
and is therefore deflected away from the wall. The eventual picture, as the cylinder
approaches the wall, is a flow which is aligned in a direction slightly inclined, closer
to the wall in front of the body and farther from it to the rear which produces a
positive lift. This argument, which is based on an irrotational type of distortion of
the flow, is essentially the same as developed by Kim, Elghobashi & Sirignano (1993)
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to explain the repulsion between two spheres placed symmetrically in a uniform
flow. This positive lift is enhanced in presence of a real, no-slip, wall where the wall
boundary layer may undergo a wake-induced separation. In such a case the separated
vorticity interacts with the facing wake, and dissipate part of the closer wake vorticity.
This additional, purely rotational, influence of the wall reduces the intensity of the
body wake on the wall side and thus the resulting wake is stronger farther from the
wall and enhances the repulsive, positive, lift.

In order to verify this picture, and also explain the observed negative lift, we
analyse the flow about the body and the corresponding pressure distribution on the
cylinder surface. Streamlines, at Re = 200, are shown in figure 12(a–e) for γ = 2, 1.75,
1.25, 0.75, 0.25, respectively; the corresponding pressure distributions are given in
figure 12(f–j). The first Fourier azimuthal harmonics of the wall pressure are shown
with radial lines because all other harmonics give null contribution to the forces on
the body; nevertheless the actual pressure (with zero arbitrary mean) is also plotted
in the same graph.

The streamlines show in all cases a deflection which is essentially the irrotational
mechanism applied to the body plus wake system. As the body approaches the wall
its wake decreases on the wall side and increases on the opposite side creating an
unbalance in the rear pressure (negative, i.e. creating a specific force directed away
from the body) and a net repulsive lift. This dynamics is evident for γ = 0.25, see
figure 12(e, j), where a wall-side wake attached to the body is almost absent; this
case corresponds to a large positive lift (see figure 11 for the actual values) and
the associated pressure distribution points upward. At larger gaps the deflection is
reduced and the wake is increasingly balanced. Nevertheless even though a small
positive lift is present for γ = 0.75, corresponding to figure 12(d, i), a negative lift
is found for γ = 1.25 and γ = 1.75, corresponding to figures 12(c, h) and 12(b, g),
respectively. In these latter cases the distribution of pressure on the rear of the body
is indeed almost balanced whereas a negative lift is caused by the distribution of
pressure in front of the body. Pressure is higher on the side opposite to the wall
simply because incoming velocity is higher there.

A mechanism leading to a negative contribution to the lift can be found in the
presence of shear in the incoming velocity profile. Let us consider a velocity profile
vx(y) in front of a cylinder placed at a position y0. The longitudinal force, at a given
Reynolds number, is of the form

Fx ∼ dv2
x(y0). (8)

We imagine dividing the cylinder in two halves above and below a line parallel to
the walls. If we only consider the effect of the shear, thus ignoring the influence of
the confining walls, the module of the force on the upper and lower halves can be
estimated in the following form:

F (±) ∼ d
(
vx(y0)± d

2

∂vx

∂y

∣∣∣∣
y0

)2

. (9)

The lift can be obtained (because of symmetry between the two faces) as the difference
between the lower and the upper forces (times a geometric coefficient), to eventually
give

Fy ∼ −dvx(y0)
∂vx

∂y

∣∣∣∣
y0

, (10)
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which gives a negative lift as a consequence of a positive shear. If we define a shear
number

σ =
d

vx(y0)

∂vx

∂y

∣∣∣∣
y0

, (11)

we obtain the following approximate linear relationship:

Fy

Fx
∼ −σ, (12)

where the proportionality coefficient is of order one and should not be, or is only
weakly, dependent on the Reynolds number.

The influence of shear on the lift has been widely investigated in the case of a
spherical body close to a wall, because of its relevance for the settling velocity of solid
particles and for dispersion of droplets. The fundamental work by Saffman (1965)
shows a square-root dependence of lift on shear in the case of moving particles. The
more recent work by Cherukat & McLaughlin (1993, see appendix by P. M. Lovalenti)
shows the presence of a negative linear contribution to the lift force, similar to (10), on
a small sphere translating in a shear near a wall. However, these results are obtained
in the limit of particle-based Reynolds number much smaller than 1, when forces are
essentially of viscous type. The argument presented above, and leading to the scaling
(12), is essentially based on pressure forces, i.e. with a quadratic velocity scaling.

To check relation (12) without the possible influence of other effects we have
performed three simulations with the cylinder placed in the centre of the channel
(γ = 2) and the walls moving at different velocities to produce a constant shear
velocity profile. The Reynolds number is fixed at Re = 200 (to have steady flows),
which corresponds to Recyl = 40, and shear number σ = 0.1, 0.2, 0.4. The relation
between the forces ratio and σ is reported with open circles in figure 13 where the
good approximation given by a linear relation (12) is evident.

On the same picture the values obtained in the normal simulations at various
distances from one wall and Reynolds numbers are shown. It must be kept in mind
that, given the upstream parabolic profile, there is a correspondence between the
parameter γ and the shear number (indicated with the arrows pointing to the σ-axis).
The forces are a result of the shear-induced negative lift and of the positive lift given
by the presence of the near wall as discussed above.

The repulsion effect due to the wall is of little significance for large gap sizes:
its strength also decreases with growing Reynolds number. This is seen in figure 13
where the results approach the asymptotic behaviour (12) indicated by the open
circles, at large γ and at growing Reynolds number. At smaller distances from one
wall the dominance of repulsion is observable, and as explained above it is more
marked at smaller Reynolds number. It must be pointed out that the cylinder-based
Reynolds number decreases for smaller gap sizes (see equations (6), (7)), which
enhances the dominance of positive lift close to the wall. In conclusion we can affirm
that, even though repulsion is the most common phenomenon (Bearman & Wadcock
1973; Bearman & Zdravkovich 1978), the presence of shear explains the possible
appearance of the negative lift as observed in figure 11.

A negative lift is found in the case of a plane turbulent boundary layer (Lei et
al. 1999), particularly noticeable in the case of a higher shear boundary layer. A
significant agreement is found with the results in the presence of shear without walls
(Nakabayashi et al. 1993). These data (see their table 1), also reported in figure 13,
show negative lift with an evident linear relation with the shear confirming relation
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(12); the few observations of positive lift values reported there are found at high,
order-one, shear values and are associated with strongly varying either drag or lift
coefficients indicating, if confirmed, the presence of complex flow dynamics which
cannot be taken into account in the simple reasoning leading to (12).

A weak attraction has been observed between two symmetric spheres in a uniform
flow (Kim et al. 1993). We argue that this small effect may be caused by a small shear
created by the pair of spheres themselves. Despite the geometric differences those
results are in qualitative agreement with the present ones: repulsion is the dominant
feature when the bodies are close each other, and a weak attraction appears in an
intermediate range when these are further apart; furthermore the attraction is also
slightly more pronounced at larger Reynolds number.

The trajectory of the unsteady force vector is reported in figure 14 for γ =
0.75, 1.25, 2 at Re = 1000, and γ = 0.25 at Re = 2000. The double loop at larger gap
sizes is a consequence of the symmetric alternate shedding, in which the lift has twice
the period of the drag. The lower loop decreases with respect to the larger one as the
separation from the lower side of the body also reduces. This disappears for smaller
gaps when shedding produces a single row of vortices.

6. Conclusions
The flow about a circular cylinder placed inside a plane channel, at various distances

from the walls, has been studied numerically for values of the Reynolds number from
those corresponding to steady flows and the initiation of the vortex shedding regime,
to before the physical appearance of three-dimensional instabilities. The absence of
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three-dimensional disturbances is inferred from the stability of both the channel
flow and the unbounded flow about a cylinder at the values of the Reynolds number
investigated here, with the exception of the highest Re, γ = 0.25, cases. The uncertainty
for this specific case means that three-dimensional instabilities may or not be delayed
by the presence of the walls compared to the case of a cylinder in unbounded
flow. However the results show that the two-dimensional transition from steady to
unsteady flow is significantly delayed by the presence of a close wall. Afterwards,
in the unsteady regime, the presence of a wall inhibits the creation of a vortex pair
and the wake becomes a single row of vortex filaments whereas the transition from
two-dimensional to three-dimensional flow in the wake of an unbounded cylinder is
caused by the self-induced stretching of the vortex pairs (Williamson 1996b).

A finite element numerical method has been employed, based on the vorticity–
stream-function formulation, to exactly satisfy the conservation of mass with a
divergence-free velocity field. The accuracy of the solutions has been checked.

It has been found that the transition from steady flow to a periodic vortex shedding
regime occurs at larger Reynolds number as the cylinder approaches one wall, because
the wake interacts with the wall boundary layer. The periodic shedding is delayed
because the vorticity shed from the cylinder’s wall side couples with the wall vorticity
which arrests its evolution. Eventually the close proximity of one wall can inhibit
the appearance of vortex shedding. It is shown that when the distance from the wall
is smaller than half the cylinder radius the vortex shedding regime only occurs at
such large values of the channel Reynolds number that the flow may have already
undergone a transition to three-dimensional flow.

In the unsteady regimes, when the body is far enough from one wall, the vortex
shedding pattern is similar to the von Kármán vortex street, even if the confinement
due to the channel walls produces an inversion on the position of vortices. When the
cylinder is closer to one wall the two layers of opposite sign vorticity, separated from
the cylinder and from the wall, form a pair of vortex sheets which dissipate during
the mutually induced stretching. As a result, for distances smaller than the cylinder
diameter (at sufficiently high Re to have an unsteady regime), the von Kármán street
is substituted by a unique row of like-signed vortices.
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For all wall–cylinder distances greater than about one cylinder diameter, the varia-
tion of the mean drag coefficient with the Reynolds number, once these are normalized
with the local velocity in front of the body, is essentially the same, despite the phe-
nomenological differences in the flow. This is not true when the cylinder is very close
to the wall when the body behaves like a larger surface-mounted obstacle with a
larger resistance.

The lift force is shown to be composed, in a first approximation, of two different
contributions: a repulsive and an attractive one. The repulsive component, previously
observed by other authors, is caused by the deflection of the wake away from the
body due to the wall confinement, an effect which is enhanced by the separation of
the wall boundary layer whose vorticity interacts with and dissipates part of the wake
vorticity which is closer to the wall. As a result the body wake, and the corresponding
low pressure zone, is stronger on the side farther from the wall and pulls the body
away from it. An attractive lift has also been observed in some cases. It has been
shown that the negative lift is a consequence of the shear in front of the body. The
velocity profile gives a higher pressure on the face farther from the wall than on the
lower one resulting in a force towards the wall. An estimate for this has been given.
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The authors acknowledge financial support from the Italian MURST “ACME-CUE”
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